Incorporating Prior Domain Knowledge Into Inductive Supervised Machine Learning Incorporating Prior Domain Knowledge Into Inductive Machine Learning
نویسندگان
چکیده
The paper reviews the recent developments of incorporating prior domain knowledge into inductive machine learning, and proposes a guideline that incorporates prior domain knowledge in three key issues of inductive machine learning algorithms: consistency, generalization and convergence. With respect to each issue, this paper gives some approaches to improve the performance of the inductive machine learning algorithms and discusses the risks of incorporating domain knowledge. As a case study, a hierarchical modelling method, VQSVM, is proposed and tested over some imbalanced data sets with various imbalance ratios and various numbers of subclasses.
منابع مشابه
A Generalized Method for Integrating Rule-based Knowledge into Inductive Methods Through Virtual Sample Creation
Hybrid learning methods use theoretical knowledge of a domain and a set of classified examples to develop a method for classification. Methods that use domain knowledge have been shown to perform better than inductive learners. However, there is no general method to include domain knowledge into all inductive learning algorithms as all hybrid methods are highly specialized for a particular algo...
متن کاملILA: Combining Inductive Learning with Prior Knowledge and Reasoning
Much effort has been devoted to understanding learning and reasoning in artificial intelligence. However, very few models attempt to integrate these two complementary processes. Rather, there is a vast body of research in machine learning, often focusing on inductive learning from examples, quite isolated from the work on reasoning in artificial intelligence. Though these two processes may be d...
متن کاملIntegrating Inductive Neural Network Learning and Explanation-Based Learning
Many researchers have noted the importance of combining inductive and analytical learning, yet we still lack combined learning methods that are effective in practice. We present here a learning method that combines explanation-based learning from a previously learned approximate domain theory, together with inductive learning from observations. This method, called explanation-based neural netwo...
متن کاملIncorporating Prior Information in Machine Learning by Creating Virtual Examples
One of the key problems in supervised learning is the insufficient size of the training set. The natural way for an intelligent learner to counter this problem and successfully generalize is to exploit prior information that may be available about the domain or that can be learned from prototypical examples. We discuss the notion of using prior knowledge by creating virtual examples and thereby...
متن کاملIncorporating Prior Knowledge About Financial Markets Through Neural Multitask Learning
We present the systematic method of Multitask Learning for incorporating prior knowledge (hints) into the inductive learning system of neural networks. Multitask Learning is an inductive transfer method which uses domain information about related tasks as inductive bias to guide the learning process towards better solutions of the main problem. These tasks are presented to the learning system i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006